Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin.
نویسندگان
چکیده
Venom from the Mohave rattlesnake, Crotalus scutulatus scutulatus, has been reported to be either: (1) neurotoxic; (2) hemorrhagic, or both (3) neurotoxic and hemorrhagic. In this study, 14 Mohave rattlesnakes from Arizona and Texas (USA) were analyzed for the presence of disintegrins and Mojave toxin. All venom samples were analyzed for the presence of hemorrhagic, proteolytic and disintegrin activities. The venoms were each chromatographed by reverse phase and their fractions tested for disintegrin activity. All specimens containing Mojave toxin were the most toxic and lacked proteolytic, hemorrhagic and disintegrin activities. In contrast, the venoms containing these activities lacked Mojave toxin. Two disintegrin genes, scutustatin and mojavestatin, were identified by PCR of genomic sequences. Scutustatin is a highly conserved disintegrin, while mojavestatin shows low conservation to other known disintegrins. Venoms with the highest LD50 measurements lacked both disintegrin genes, while the specimens with intermediate and low LD50 contained both genes. The intermediate LD50 group contained Mojave toxin and both disintegrin genes, but lacked hemorrhagic and disintegrin activity. Our results raise the possibility that scutustatin and mojavestatin are not expressed in the intermediate LD50 group, or that they may not be the same disintegrins responsible for the disintegrin activity found in the venom. Therefore, it is possible that Mohave rattlesnakes may produce more than two disintegrins.
منابع مشابه
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in ...
متن کاملGenetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus scutulatus scutulatus)
The metalloproteinase composition and biochemical profiles of rattlesnake venom can be highly variable among rattlesnakes of the same species. We have previously shown that the neurotoxic properties of the Mojave rattlesnake (Crotalus scutulatus scutulatus) are associated with the presence of the Mojave toxin A subunit suggesting the existence of a genetic basis for rattlesnake venom compositio...
متن کاملIsolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake).
Disintegrins and disintegrin-like proteins are molecules found in the venom of four snake families (Atractaspididae, Elapidae, Viperidae, and Colubridae). The disintegrins are nonenzymatic proteins that inhibit cell-cell interactions, cell-matrix interactions, and signal transduction, and may have potential in the treatment of strokes, heart attacks, cancers, and osteoporosis. Prior to 1983, th...
متن کاملPhenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.
Phenotypic diversity generated through altered gene expression is a primary mechanism facilitating evolutionary response in natural systems. By linking the phenotype to genotype through transcriptomics, it is possible to determine what changes are occurring at the molecular level. High phenotypic diversity has been documented in rattlesnake venom, which is under strong selection due to its role...
متن کاملCloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus).
Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative biochemistry and physiology. Toxicology & pharmacology : CBP
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2005